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a  b  s  t  r  a  c  t

Huanglongbing  (HLB)  and  citrus  variegated  chlorosis  (CVC)  are serious  threats  to  citrus  production  and
have  caused  considerable  economic  losses  worldwide,  especially  in  Brazil,  which  is  one of  the  biggest
citrus  producers  in  the  world.  Neither  disease  has  a  cure  nor  an  efficient  means  of  control.  They  are  also
generally  confused  with  each  other  in the  field  since  they share  similar  initial  symptoms,  e.g., yellowing
blotchy  leaves.  The  most  efficient  tool  for detecting  these  diseases  is  by  polymerase  chain  reaction  (PCR).
However,  PCR  is expensive,  is not  high  throughput,  and  is  subject  to  cross  reaction  and  contamination.
In  this  report,  a  diagnostic  method  is proposed  for detecting  HLB  and CVC  diseases  in leaves  of  sweet
orange  trees  using  attenuated  total  reflectance  Fourier  transform  infrared  spectroscopy  and  the induced
ransform infrared spectroscopy
uanglongbing
itrus variegated chlorosis
iagnosis  of citrus diseases

classifier  via  partial  least-squares  regression.  Four  different  leaf  types  were  considered:  healthy,  CVC-
symptomatic,  HLB-symptomatic,  and  HLB-asymptomatic.  The  results  show  a success  rate  of  93.8%  in
correctly  identifying  these  different  leaf  types.  In order to understand  which  compounds  are  responsible
for  the spectral  differences  between  the  leaf  types,  samples  of  carbohydrates  starch,  sucrose,  and  glucose,
flavonoids  hesperidin  and  naringin,  and  coumarin  umbelliferone  were  also  analyzed.  The  concentration
of  these  compounds  in  leaves  may  vary  due  to biotic  stresses.
© 2012 Published by Elsevier B.V.
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Citrus production is one of the most important economic
agricultural activities in the world. Annually, approximately 122
millions of tons of citrus fruits, including oranges, grapefruits,
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emons, and tangerines, are produced, corresponding to roughly
S$ 17 billion from the sale of juices and fresh fruit worldwide in
008, according to the Food and Agriculture Organization of the
nited Nations [1]. However, economic losses in citrus production
ave occurred in recent years due to diseases such as huanglong-
ing (HLB) and citrus variegated chlorosis (CVC). HLB is a serious
hreat to world production, as it has rapidly spread through the
rchards of many countries, especially the world’s largest citrus
roducers, Brazil and the United States. CVC is a disease commonly
ound in orchards in Brazil and has also caused several losses in
ecent years.

CVC  is caused by Xylella fastidiosa, which colonizes the xylem
essels and disrupts the transport of water and nutrients from
he root system to the canopy [2]. It affects all sweet orange vari-
ties equally and can be transmitted by leafhoppers, contaminated
udwood, and seedlings [3]. Field management of CVC involves
he planting of healthy seedlings, chemical control of the vectors,
runing of infected branches in trees more than 6 years old, and
radication of diseased trees younger than 5 years old [3]. The
stimated control cost in São Paulo State, Brazil, is nearly US$
00 million [3]. Symptoms in sweet orange include bright yel-

ow leaf mottle with distinct lesions on the adaxial leaf surface
2]. In older leaves, these lesions extend through the leaf to form
ummy  blisters similar to lesions on the abaxial leaf surface. On
everely affected trees, the internodes are markedly shortened, and
he leaves are abnormally small. Fruits remain small and hard at
arvest time [4].

HLB  is caused by a phloem-limited bacterium provisionally
amed Candidatus Liberibacter spp., and its vector is the citrus
syllid Diaphorina citri [5]. No sources of resistance are known
ithin the citrus group, and the pathosystem is poorly understood.
ll varieties of sweet oranges and mandarins are highly suscepti-
le to HLB. HLB has been controlled by planting certified healthy
eedlings, eradicating symptomatic trees found in the orchard, and
hemically spraying for the vector. Typical HLB symptoms include
lotchy asymmetric yellowing leaves and deformed fruits [6]. In
ome cases the leaves may  become thicker with enlarged veins [6].
he fruits are generally bitter, small, and deformed, with a thicker
lbedo and aborted seeds. Some fruits may  also display blotchy
ottle symptoms [7]. The asymptomatic phase can last from 6
onths to 2 years [8], making the infected tree an undetectable

ource of the disease in the field.
Several studies have attempted to elucidate the chemical

hanges caused by HLB and CVC. Several reports have shown
he accumulation of starch in the leaves of trees infected with
LB [9–12]. Fan et al. [9] also found changes in different
arbohydrate concentrations in healthy, HLB-symptomatic, and
LB-asymptomatic leaves. While starch and sucrose increase in
LB-asymptomatic and HLB-symptomatic leaves when compared

o healthy ones, maltose progressively decreases from healthy to
ymptomatic leaves. A significant increase has also been observed
n the fructose concentration of asymptomatic leaves when com-
ared to healthy or symptomatic counterparts.

The concentration of secondary metabolites may  also dif-
er in diseased trees, as shown in other studies [13–16]. It has
een reported that the concentration of the flavonoid hesperidin

ncreases in the leaf mesophyll cells of trees affected by CVC
13]. Other secondary metabolites also suggest CVC infection, such
s phytoalexins, which are antimicrobial substances that accu-
ulate after infection by pathogens [14]. The accumulation of

ntifungal compounds, such as coumarins, in citrus tissues has
een observed after inoculation with Phytophthora citrophthora
Please cite this article in press as: M.C.B. Cardinali, et al., Talanta (2012), do

15]. Afek et al. [16] showed that the concentration of umbellif-
rone (7-hydroxycoumarin) increased considerably in the albedo
f immature grapefruits compared to the albedo of mature fruits
fter inoculation with Penicillium digitatum.
 PRESS
ta xxx (2012) xxx– xxx

The  diagnosis of HLB and CVC is generally performed by the
quantitative real-time polymerase chain reaction (PCR) [17–20],
which detects the bacterium with high accuracy by using its genetic
code. This method, however, is expensive and laborious, and hence,
it is ill-suited for large-scale use. Furthermore, since the HLB and
CVC bacteria distributions inside the whole tree are not uniform
[17,20], the diseases may  not be diagnosed by this method in the
analyzed samples if the corresponding bacteria are absent.

Spectroscopic methods appear to be promising alternatives for
the diagnosis of citrus diseases since they can rapidly measure the
optical properties of the samples that are related to their chemical
composition. Such methods have already been employed for inves-
tigating chemical changes in HLB disease trees [12,21–26]. Based on
the concentrations of several elements, Pereira et al. [21] identified
differences not only in healthy and HLB-symptomatic leaves, but
also in HLB-asymptomatic and healthy leaves with a 90% success
rate. Pereira et al. [22] also showed that infected young trees with
HLB can be diagnosed some months after inoculation even in the
asymptomatic phase using laser-induced breakdown spectroscopy
(LIBS). In these studies, no other diseases were considered.

Using mid-infrared spectroscopy, Sankaran et al. [12] dis-
tinguished HLB-symptomatic leaves from healthy and nutrient-
deficient leaves with a 90% success rate. Hawkins et al. [25]
employed attenuated total reflectance Fourier transform infrared
(ATR-FTIR) spectroscopy to compare several diseases, such as tris-
teza, citrus leaf rugose, citrus psorosis, and citrus canker, and
deficiencies of nutrients, including iron, copper, zinc, manganese,
and magnesium, with HLB-symptomatic and healthy trees. They
reported that leaves from trees with certain nutrient deficiencies
and with citrus canker could not be distinguished from HLB-
positive trees. In another analysis, Hawkins et al. [26] compared
healthy trees with HLB-infected trees at several stages, including
asymptomatic trees, using ATR-FTIR. They achieved a 95% success
rate, however, few asymptomatic trees were considered.

Although infrared spectroscopy has been applied to distinguish
healthy trees or leaves from nutrient-deficient, HLB-symptomatic,
and HLB-asymptomatic trees or leaves, all samples in the previ-
ous analyses [12,25,26] were derived from temperate zones and
required preparation (e.g., grinding). The leaves considered in this
article were collected from trees in tropical zones and were mea-
sured in natura. Also, in previous analyses, HLB-infected leaves
were compared to neither CVC-infected leaves nor secondary
metabolites.

In this article, ATR-FTIR spectroscopy is employed to identify dif-
ferences between healthy, HLB-symptomatic, HLB-asymptomatic,
and CVC-symptomatic leaves. Samples of carbohydrate starch,
sucrose, and glucose, flavonoids naringin and hesperidin and the
coumarin umbelliferone were examined to determine whether
these compounds show the spectral characteristics that may  con-
tribute to the spectral differences observed between the leaves
analyzed.

2. Materials and methods

2.1.  Samples

Leaves were collected from healthy, HLB-, and CVC-infected
adult trees of Valencia sweet orange (Citrus sinensis L. Osbeck)
grafted onto Swingle citrumelo (Citrus paradisi Macf. × Poncirus
trifoliata L. Raf.), located at the Fisher Group’s farm in the city of
Mat ao (State of São Paulo, Brazil). All infected trees considered
had typical HLB or CVC symptoms and were identified by qualified
i:10.1016/j.talanta.2012.01.008

inspectors. Healthy trees were chosen from grove blocks without
HLB or CVC infestation and were free of any other type of stress.
All plants were grown under the same soil, water, nutrient, and
pesticide conditions.
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Fig. 1. Examples of CVC (a), healthy (b), HLB-symptomatic (c), and HLB-
asymptomatic  (d) leaves, illustrating their differences. HLB- and CVC-symptomatic
leaves  are commonly confused because they have similar color patterns, although
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he  former can sometimes have black stains as in (a). The difficulty in separating
hese  four classes lies in distinguishing healthy (b) from HLB-asymptomatic (d)
eaves due to the lack of visual differences.

Eight trees of each condition (healthy, HLB, and CVC) were con-
idered. Healthy leaves were randomly collected from the external
art of the tree canopy at around 1.5 m from the ground. All
VC- and HLB-symptomatic leaves had typical visible symptoms.
LB-asymptomatic leaves were collected from trees with typical

ymptoms of HLB in the same way as healthy leaves but by avoiding
ranches that had symptomatic leaves. The conditions of the leaves,

.e., healthy, CVC, HLB-symptomatic, and HLB-asymptomatic, are
enceforth called classes. A total of 40 leaves of each class were
ollected. Fig. 1 shows an example of each class of leaves collected.
fter being collected, the leaves were transported the same day.

n the laboratory, the leaves were cleaned with cotton moistened
ith distilled water and kept in plastic bags refrigerated at tem-
eratures of about 5 ◦C. Measurements were taken within 3 days of
ollection.

Potassium bromide (KBr) pellets were prepared with starch,
ucrose, and glucose standard samples, and with hesperidin,
aringin, and umbelliferone commercial samples. Each pellet was
btained by crushing 1 mg  of each compound with 100 mg  of KBr
ried powder and pressing it into a die with a pressure of 5 tons for

 min.

.2.  FTIR measurements

A  Perkin Elmer Spectrum 1000 with a detector based on LiTaO3
lithium tantalate) crystal was used for FTIR measurements, along
ith Spectrum version 5.3 acquisition software. All measurements
ere made with leaves in natura on the adaxial side, next to the
idrib. The leaves were placed on the ATR crystal, which was  made

f zinc selenide, to collect the surface spectra. The KBr pellets were
laced in a pellet holder. For each sample, 32 scans were made
t a range of 4000–700 cm−1, with spectral resolution of 4 cm−1.
or all measures, the equipment room was maintained at 21 ◦C
nd 30–35% relative air humidity. To eliminate the influence of the
quipment and the atmospheric conditions on the measurements,

 background spectrum was collected before collecting the spectra
f the leaves. For the carbohydrates and metabolites, a pure KBr
ellet was measured for background. After each measure, the ATR
rystal was cleaned with acetone and cotton. Leaves of different
lasses were measured in random order to eliminate any chance of
iased results.

.3.  Dataset treatment and classification model
Please cite this article in press as: M.C.B. Cardinali, et al., Talanta (2012), do

The leaf spectral dataset was preprocessed using the Spectrum
ersion 5.1 equipment software from Perkin Elmer, which cor-
ected the spectrum baselines by using a quadratic function. Then,
 PRESS
ta xxx (2012) xxx– xxx 3

the  spectral offsets were adjusted by setting the minimum absorp-
tion to zero, and spectra were normalized by their respective areas.
The normalization step was performed to emphasize the local dif-
ferences between the peaks and the bands (spectral profile) and to
reduce the influence of the intensity of the whole spectra. The water
absorbance region was  ignored, selecting a range of 1530–700 cm−1

to induce the classifier.
Classification was  performed by an induced classifier via par-

tial least square regression (PLSR). PLSR is a method widely
used in chemometrics [27] for evaluating the concentration of
chemical compounds in samples from their emission, absorption,
reflectance, transmittance, or fluorescence spectra. This method is
characterized by finding a linear transformation in the predictor
variables (the spectral points) that provides the best correlation
with the response variables (the concentration of the chemical
compounds). The main advantage of PLSR is to use the linear cor-
relation between the predictor variables to build the regression
model.

To apply PLSR to classification problems, the classes must be
identified as numbers (see [28]). The induced classifier via regres-
sion associates classes with numbers using a process known as
binarization, in which a value of 1 is attributed to a reference class
and a value of 0 is attributed to the others. Therefore, for each class,
one leaf spectral dataset equal to the original one is created and
is split into training and test sets. The first set is used to adjust
the regression method, while the second validates it. For each ele-
ment of the test set, the adjusted regression method returns a value
between 0 and 1. The higher the value is, the higher the similarity
is between the corresponding spectrum and the reference class.
The same procedure is then repeated for all classes using the same
training and test sets. Thus, one value between 0 and 1 is obtained
for each spectrum tested and for each class. The spectrum tested is
assigned to the class with the highest value returned by the regres-
sion methods. For each spectrum tested, the classifier also provides
for each class a prediction probability that is proportional to the
corresponding value returned by the regression models. Such a
probability may  be used as an indicator of the quality of a given
assignment performed by the classifier.

The classifier accuracy was evaluated by 10 realizations of
10-fold stratified cross-validation, where the dataset is randomly
partitioned into 90% for training and 10% for testing. The process
of cross-validation is iterated with different random partitions,
and the results are averaged. This procedure is applied to ensure
that the accuracy will not be biased due to a particular partition-
ing of training and test sets. The dataset used in the classifier was
mean centered, and the first 20 components were used in the PLSR
model.

3. Results and discussion

The  results are presented in two subsections. The first sub-
section describes and explains the spectral differences between
the classes, and the second subsection presents and discusses the
results obtained by the induced classifier via PLSR.

3.1. Spectral differences

Fig.  2 shows typical spectra of healthy, HLB-asymptomatic, HLB-
symptomatic, and CVC leaves, normalized by area. These typical
spectra of healthy and diseased leaves were chosen according to
the prediction probability obtained by the induced classifier, the
i:10.1016/j.talanta.2012.01.008

results of which will be presented in the next subsection. Thus, the
typical spectrum of each leaf type is the one that has the highest
prediction probability for the corresponding class, i.e., the typical
spectrum is the one that best represents the respective leaf type.
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classes are low (less or equal than 6%), the classes do in fact
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Fig. 2. Typical normalized FTIR spectra of all leaf types.

In Fig. 2, many differences between the spectra of leaves can be
bserved, especially from 1300 to 900 cm−1. The peak at 1437 cm−1

s only well defined for the healthy leaf spectrum. The band of the
LB-symptomatic spectrum at 1250 cm−1 is broad, deformed, and

hifted in comparison to the bands of the other spectra. The ratio
etween intensities of peaks can also be useful to differentiate the

eaf types, e.g., between the peaks at 1170 and 1105 cm−1, at 1170
nd 1035 cm−1, at 1419 and 1377 cm−1, at 913 and 877 cm−1, and
t 832 and 720 cm−1. In addition, other spectral differences are not
learly visible in Fig. 2 that may  also help to distinguish the leaf
ypes. Finding the pattern which best characterizes each leaf type
s not an easy task, especially when the differences are not so clear.
uch a task is then performed by classifiers which automatically
etermine the best combination of spectral points that defines each

eaf type.
The  range of 1175–900 cm−1 is generally associated with

he absorption of starch [12,25,26], the concentration of which
s expected to be different between healthy and HLB (either
ymptomatic or asymptomatic) leaves [9–12]. However, it is not
ossible to assign this range only to the absorption of carbo-
ydrates because other chemical substances in the leaves may
lso absorb infrared light-for instance, secondary metabolites.
oreover, the concentrations of secondary metabolites may  be

ifferent when comparing a healthy leaf to a diseased leaf and
ay also contribute to distinguishing them. To understand which

hemicals are responsible for the spectral variations observed
n Fig. 2, FTIR measurements were performed on samples of
arbohydrates and secondary metabolites. Fig. 3 shows the nor-
alized spectra of starch, glucose, and sucrose standard samples.

ig. 4 exhibits the spectra of the flavonoids hesperidin and
aringin and the coumarin umbelliferone produced by citrus
rees.

The obtained spectra shown in Figs. 3 and 4 are similar to
hose found in Spectral Database for Organic Compounds from
he National Institute of Advanced Science and Technology [29].
mong the flavonoids, hesperidin is one of the most abundant sec-
ndary metabolites in the leaves of Valencia sweet orange (about

 mg/g); the presence of naringin was not verified in healthy leaves
f the same variety [30]. Although other abundant flavonoids are
resent in citrus leaves [30], such as rutin, diosmin, nobiletin, and

sorhoifolin, that were not considered in this analysis, the spec-
ra of the secondary metabolites shown in Fig. 4 provide strong
vidence that their contributions are crucial to understanding the
Please cite this article in press as: M.C.B. Cardinali, et al., Talanta (2012), do

eaks and bands in the ranges 1530–1175 cm−1 and 900–700 cm−1

n Fig. 2, where the carbohydrates do not have peaks or bands simi-
ar to the leaf spectra (see Fig. 3). In addition, the bands at 1515 and
Fig. 3. Normalized FTIR spectra of KBr pellets of starch, glucose, and sucrose stan-
dard  samples.

1450 cm−1 in Fig. 2 could be associated with the vibrational modes
of hesperidin and umbelliferone (see Fig. 4).

3.2. Classifier induced results

Table 1 shows the confusion matrix of the induced classifier via
PLSR. The columns of this matrix represent the assigned classes
by the classifier, and the rows, the nominal classes. Each value in
this table corresponds to the portion of a nominal class that was
assigned by the induced classifier to a certain class. The sum of each
row is 100%. Each diagonal element is the success rate per class,
and the average of the matrix trace represents the total success
rate of the classifier, which is 93.8%. The standard deviation of the
classification was  6.3%.

According to Table 1, HLB-symptomatic is the class with the
highest success rate, followed by CVC and HLB-asymptomatic. The
lowest success rate was obtained for the healthy class, with a suc-
cess rate of 89.25%. Curiously, the misclassification rate between
healthy and HLB-asymptomatic leaves, which are visually similar
(see Fig. 1), was  one of the lowest. The misclassification between
the HLB-symptomatic and the HLB-asymptomatic leaves may  not
be considered an error because they represent the same disease at
i:10.1016/j.talanta.2012.01.008

Wavenumber (cm )

Fig. 4. Normalized FTIR spectra of KBr pellets of flavonoids and coumarin commer-
cial  samples.



ARTICLE IN PRESSG Model

TAL-12713; No. of Pages 6

M.C.B. Cardinali et al. / Talanta xxx (2012) xxx– xxx 5

Table  1
Confusion matrix of the induced classifier via PLSR with 10 realizations of 10-fold stratified cross-validation. The columns correspond to the assigned classes of the classifier,
and  the rows correspond to the nominal classes. The classifier achieved a success rate of 93.8% (the average of the matrix trace) with a standard deviation of 6.3%.

Nominal class CVC Healthy HLB-asympt. HLB-sympt.

CVC 95.00% 2.50%a 2.50%a 0.00%
Healthy 3.25%a 89.25% 1.50%a 6.00%a

HLB-asympt. 3.25%a 3.00%a 93.75% 0.00%
HLB-sympt. 0.00% 2.50%a

a Incorrect predictions.

Table  2
Fraction of incorrect predictions for prediction probabilities greater than a given
threshold. Results obtained by induced classifier via PLSR with 10 realizations of
10-fold stratified cross-validation using the Waikato Environment for Knowledge
Analysis  (WEKA) [31].

Threshold (%) Fraction of incorrect predictions (%)

30 100.00
40 91.92
50 51.51
60 19.19
70 6.06
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[
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90 0.00

y infrared spectroscopy analysis. Such differences were then
ncovered by the induced classifier via PLSR.

In addition to the analysis of the confusion matrix, it is also
ossible to analyze the prediction probability of each leaf tested.
his probability indicates the degree of similarity between the leaf
ested and the classes obtained by the induced classifier. Thus,
he higher the prediction probability, the greater the similarity
etween the leaf tested and the trained class. For example, if the
rediction probability for a leaf tested is 100% for a given class, then
his leaf has no similarity with the other classes. With lower val-
es, the chance of having an incorrect prediction increases. Table 2
xhibits the portion of errors for prediction probabilities greater
han a given threshold. The proportion of errors quickly decreases
s the prediction probability increases. For example, for a predic-
ion probability above 70%, the proportion of errors is only 6.06%.
he proportion of errors can then be used as an index of the quality
f the predictions of the classifier. Thus, based on that index, the
roducer can make better decisions.

The robustness of the induced classifier via PSLR may be a
esult of the spectral differences found between the classes and
he efficiency of the PLSR model used to uncover such differences.
lthough these differences exist and may  be related to variations

n carbohydrate and secondary metabolites (see Figs. 2–4), further
nalyses have to be conducted in order to verify which chemical
olecules are being altered in the evolution of diseases in citrus

rees. Such analyses will help to improve the classifier and the
etection rate of CVC and HLB diseases.

. Conclusions

This study shows that ATR-FTIR spectroscopy can be used to
iagnose HLB and CVC diseases in citrus leaves. The use of ATR-FTIR
nables measurements with leaves without any sample prepara-
ion, which makes the analysis process faster (by a few minutes).
n this study, a method was developed using the combination of
TR-FTIR spectroscopy with an induced classifier via PLSR applied

o leaves for diagnosis of diseases in Valencia sweet orange. The
otal success rate of the method was around 94%. It is important
Please cite this article in press as: M.C.B. Cardinali, et al., Talanta (2012), do

o emphasize that the method differentiated healthy from HLB-
symptomatic leaves with success rate greater than 95%. The high
ccuracy rate may  be related to variations in the concentration of
arbohydrates and secondary metabolites, such as hesperidin and

[
[

0.25%a 97.50%

umbelliferone. While hesperidin is one of the secondary metabo-
lites of citrus with the highest concentration in the leaves of
Valencia sweet orange, umbelliferone is a coumarin involved in
plant defense against pathogens and is also a precursor of other
coumarins produced for the same purpose. Further analyses should
investigate which substances are changing in the evolution of cit-
rus diseases and which ones contribute most to the diagnosis of
diseases in citrus trees.

The  major advantages of the method developed here are the high
accuracy rate and the speed of the analysis process, both of which
enable the use of a large-scale diagnostic tool for citrus diseases
aimed at the construction of infestation maps, and, thus provide a
more efficient means of control.
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[7]  T.R. Gottwald, J.V. Graç a, R.B. Bassanezi, Plant Health Prog. (2007) (Online,
doi:10.1094/PHP-2007-0906-01-RV).

[8]  T.M. Spann, R.A. Atwood, M.M.  Dewdney, R.C. Ebel, R. Ehsani, G.  England, S.
Futch, T. Gaver, T. Hurner, C. Oswalt, M.E. Rogers, F.M. Roka, M.A. Ritenour, M.
Zekri, Citrus Ind. 91 (2010) 6–13.

[9] J. Fan, C. Chen, R.H. Brlansky, F.G. Gmitter Jr., Z.G. Li, Plant Pathol. 59 (2010)
1037–1043.

10]  D.S. Achor, E. Etxeberria, N. Wang, S.Y. Folimonova, K.R. Chung, L.G. Albrigo,
Plant Pathol. J. 9 (2010) 56–64.

11] E. Etxeberria, P. Gonzalez, D. Achor, G. Albrigo, Physiol. Mol. Plant Phytol. 74
(2009) 76–83.

12] S. Sankaran, R. Ehsani, E. Etxeberria, Talanta 83 (2010) 574–581.
13] A.B. Ribeiro, P.V. Abdelnur, C.F. Garcia, A. Belini, V.G.P. Severino, M.F.G.F. Da

Silva, J.B. Fernandes, P.C. Vieira, S.A. de Carvalho, A.A. de Souza, M.A. Machado,
J. Agric. Food Chem. 56 (2008) 7815–7822.

14] R. Hammerschmidt, Annu. Rev. Phytopathol. 37 (1999) 285–306.
15] U. Afek, A. Sztejnberg, Phytopathology 79 (1989) 736–739.
16] U. Afek, J. Orenstein, S. Carmeli, V. Rodov, M. Joseph, Phytochemistry 50 (1999)

1129–1132.
17]  D.C. Teixeira, C. Saillard, C. Couture, E.C. Martins, N.A. Wulff, S. Eveillard-
i:10.1016/j.talanta.2012.01.008

Jagoueix, P.T. Yamamoto, A.J. Ayres, J.M. Bové, Mol. Cell. Probes 22 (2008)
139–150.

18] W. Li, J.S. Hartung, L. Levy, J. Microbiol. Methods 66 (2006) 104–115.
19] X. Qin, V.S. Miranda, M.A. Machado, E.G.M. Lemos, J.S. Hartung, Phytopathology

91 (2001) 599–605.



 ING Model

T

6  Talan

[

[

[

[

[

[

[

[

[

[

ARTICLEAL-12713; No. of Pages 6

M.C.B. Cardinali et al. /

20] L.A. Peroni, J.R.R. dos Reis, H.D. Coletta-Filho, A.A. de Souza, M.A. Machado, D.R.
Stach-Machado, J. Microbiol. Methods 75 (2008) 302–307.

21] F.M.V. Pereira, D.M.B.P. Milori, A.L. Venâncio, M.S.T. Russo, P.K. Martins, J.
Freitas-Astúa, J. Anal. At. Spectrom. 25 (2010) 351–355.

22]  F.M.V. Pereira, D.M.B.P. Milori, A.L. Venâncio, M.S.T. Russo, P.K. Martins, J.
Freitas-Astúa, Talanta 83 (2010) 351–356.

23]  F.M.V. Pereira, D.M.B.P. Milori, E.R. Pereira Filho, A.L. Venâncio, M.S.T. Russo,
P.K. Martins, J. Freitas-Astúa, Anal. Methods 3 (2011) 552–556.
Please cite this article in press as: M.C.B. Cardinali, et al., Talanta (2012), do

24] F.M.V. Pereira, D.M.B.P. Milori, E.R. Pereira Filho, A.L. Venâncio, M.S.T. Russo,
M.C.B. Cardinali, P.K. Martins, J. Freitas-Astúa, Comput. Electron. Agric. 79
(2011) 90–93.

25] S.A. Hawkins, B. Park, G.H. Poole, T.R. Gottwald, W.R. Windham, J. Albano, K.C.
Lawrence, J. Agric. Food Chem. 58 (2010) 6007–6010.

[

[

 PRESS
ta xxx (2012) xxx– xxx

26] S.A. Hawkins, B. Park, G.H. Poole, T.R. Gottwald, W.R. Windham, K.C. Lawrence,
Appl. Spectrosc. 64 (2010) 100–103.

27] S. Wold, M.  Sjöström, L. Eriksson, Chemom. Intell. Lab. Syst. 58 (2001)
109–130.

28] E. Frank, Y. Wang, S. Inglis, G. Holmes, I.H. Witten, Mach. Learn. 32 (1998)
63–76.

29]  Spectral Database for Organic Compounds, National Institute of Advanced
Industrial Science and Technology (AIST), 2011, Available at: http://riodb01.
i:10.1016/j.talanta.2012.01.008

ibase.aist.go.jp/sdbs/cgi-bin/direct frame top.cgi, Accessed: 10/30/2011.
30] S. Kawaii, Y. Tomono, E. Katase, K. Ogawa, M.  Yano, M. Koizumi, C. Ito, H.

Furukawa, J. Agric. Food Chem. 48 (2000) 3865–3871.
31] M.A. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, SIGKDD

Explor. 11 (2009) 10–18.


	Infrared spectroscopy: A potential tool in huanglongbing and citrus variegated chlorosis diagnosis
	1 Introduction
	2 Materials and methods
	2.1 Samples
	2.2 FTIR measurements
	2.3 Dataset treatment and classification model

	3 Results and discussion
	3.1 Spectral differences
	3.2 Classifier induced results

	4 Conclusions
	Acknowledgements
	References


